News
News
- What are the main factors affecting the viscosity of polyacrylamide?
- Drag reducing agent used for crude oil pipeline
- The main application of super absorbent polymer
- Correct selection method of polyacrylamide for mineral processing
- What is the degree of hydrolysis and ionic degree of polyacrylamide?
- What factors are related to the amount of polyacrylamide?
- Effect and distinction of polyacrylamide and decolorizing agent
- Causes and solutions of sludge whitening in sewage
- Application of polyacrylamide in the whole process of oil recovery
- Characteristics and application range of instant polyacrylamide
Acaylamide
Acrylamide (or acrylic amide) is a chemical compound with thechemical formula C3H5NO. Its IUPAC name is prop-2-enamide. It is a white odorless crystalline solid, soluble in water, ethanol, ether, and chloroform. Acrylamide decomposes in the presence of acids, bases, oxidizing agents, iron, and iron salts. It decomposes non-thermally to form ammonia, and thermal decomposition produces carbon monoxide, carbon dioxide, and oxides of nitrogen.
Acrylamide can be prepared by the hydrolysis of acrylonitrile bynitrile hydratase. In industry, most acrylamide is used to synthesize polyacrylamides, which find many uses as water-solublethickeners. These include use in wastewater treatment, gel electrophoresis (SDS-PAGE), papermaking, ore processing, tertiary oil recovery, and the manufacture of permanent press fabrics. Some acrylamide is used in the manufacture of dyes and the manufacture of other monomers.
The discovery of acrylamide in some cooked starchy foods in 2002 prompted concerns about the carcinogenicity of those foods. As of 2014 it is still not clear whether acrylamide consumption affects people's risk of developing cancer.
Uses
Molecular biology laboratories
Polyacrylamide was first used in a laboratory setting in the early 1950s. In 1959, the groups of Davis and Ornstein and of Raymond and Weintraub independently published on the use of polyacrylamide gel electrophoresis to separate charged molecules. The technique is widely accepted today, and remains a common protocol in molecular biology labs.
Acrylamide has many other uses in molecular biology laboratories, including the use of linear polyacrylamide (LPA) as a carrier, which aids in the precipitation of small amounts of DNA. Many laboratory supply companies sell LPA for this use.
Other uses
The majority of acrylamide is used to manufacture various polymers. In the 1970s and 1980s, the proportionately largest use of these polymers was in water treatment. Additional uses include as binding, thickening or flocculating agents in grout, cement, sewage/wastewater treatment, pesticide formulations, cosmetics, sugar manufacturing, soil erosion prevention, ore processing, food packaging, plastic products, and paper production. Polyacrylamide is also used in some potting soil. Another use of polyacrylamide is as a chemical intermediatein the production of N-methylol acrylamide and N-butoxyacrylamide.
US demand for acrylamide was 253,000,000 pounds (115,000,000 kg) as of 2007, increased from 245,000,000 pounds (111,000,000 kg) in 2006.